Chapter 9 Measurement Bias

Jihu Lee July 29, 2021

- 1 Measurement error
- 2 The structure of measurement error
- 3 Mismeasured confounders
- 4 Intention-to-treat effect: the effect of a misclassified treatment
- 6 Per-protocol effect

- ullet All variables were perfectly measured o unrealistic assumption!
- Pedestrian example) what if recorder of the pedestrians' responses made many mistakes?
- Various types of measurement error can be generated

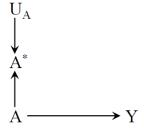


Figure 9.1

- A*: measured treatment
- U_A : measurement error for A
 - all factors other than A that determine the value of A*

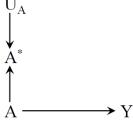


Figure 9.1

- A: cholesterol-lowering drug
- Y: liver disease
- A*: measured use of drug
- *U_A*: physician's memory, patient's attendance

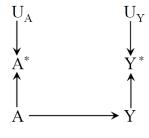


Figure 9.2

- outcome Y can be measured with error too
- Y*: measured outcome
- U_Y : measurement error for Y

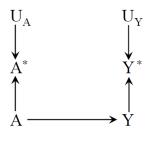


Figure 9.2

- no confounder and selection bias
 - ightarrow association is causation

$$\frac{Pr[Y=1|A=1]}{Pr[Y=1|A=0]} = \frac{Pr[Y^{a=1}=1]}{Pr[Y^{a=0}=1]}$$

7

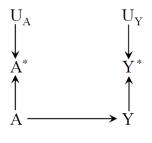


Figure 9.2

• In realistic setting, measure of association between A^* and Y^* differ from that of A and Y

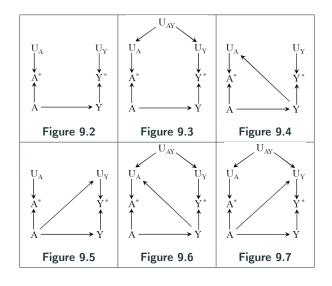
$$\frac{Pr\left[Y^*=1|A^*=1\right]}{Pr\left[Y^*=1|A^*=0\right]} \neq \frac{Pr\left[Y^{a=1}=1\right]}{Pr\left[Y^{a=0}=1\right]}$$

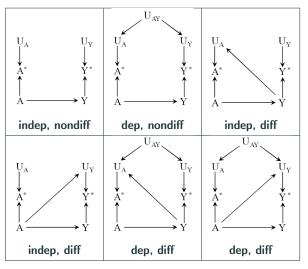
→ measurement bias

- 1 Measurement error
- 2 The structure of measurement error
- 3 Mismeasured confounders
- 4 Intention-to-treat effect: the effect of a misclassified treatment
- 6 Per-protocol effect

- Causal structure of
 - confounding: presence of common causes
 - selection bias: conditioning on common effects
 - measurement bias: independence, nondifferentiality

- U_A and U_Y are independent $\Leftrightarrow f(U_Y, U_A) = f(U_Y)f(U_A)$
- U_A is nondifferential $\Leftrightarrow f(U_A|Y) = f(U_A)$
- U_Y is nondifferential $\Leftrightarrow f(U_Y|A) = f(U_Y)$





 Structure determines the error correction method (not in this book)

- 1 Measurement error
- 2 The structure of measurement error
- 3 Mismeasured confounders
- 4 Intention-to-treat effect: the effect of a misclassified treatment
- 6 Per-protocol effect

Mismeasured confounders

 Mismeasurement of confounders will result in bias even if both treatement and outcome are perfectly measured

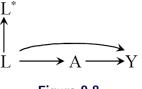
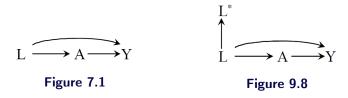


Figure 9.8

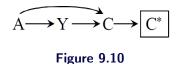
- A: drug use
- Y: liver disease
- L: history of hepatitis

Mismeasured confounders



- In figure 7.1
 - open backdoor path $A \leftarrow L \rightarrow Y$: confounding
 - IP weighting or standardization to compute the average causal effect
- In figure 9.8
 - if the confounder *L* was not perfectly measured...
 - the backdoor path cannot be blocked by conditioning on L^*

Mismeasured confounders



- It is also possible that a collider C is measured with error
- C* is a common effect of A and Y
 - \rightarrow conditioning on C^* will intoduce selection bias

- 1 Measurement error
- 2 The structure of measurement error
- 3 Mismeasured confounders
- 4 Intention-to-treat effect: the effect of a misclassified treatment
- **5** Per-protocol effect

Intention-to-treat effect

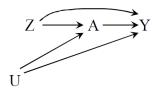


Figure 9.11

- Z: assigned treatment
- It is different from the missclassified treatments A*
- A^* does not have a causal effect on Y
- association between A* and Y is entirely due to A

Intention-to-treat effect

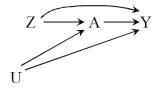


Figure 9.11

- The effect of Z does not measure the effect of treating with A
- Intention-to-treat effect
 - the effect of assigning participants to being treated with A
 - ullet Z o A o Y, Z o Y

Intention-to-treat effect

- \bullet Often investigators try to partly decontaminate the effect of Z by eliminating $Z\to Y$
- double-blind-placebo-controlled randomized experiment

- 1 Measurement error
- 2 The structure of measurement error
- 3 Mismeasured confounders
- 4 Intention-to-treat effect: the effect of a misclassified treatment
- **5** Per-protocol effect

Per-protocol effect

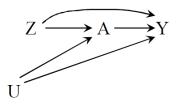


Figure 9.11

- Intention-to-treat effect
 - the effect of assigning participants to being treated with A
 - $Z \rightarrow A \rightarrow Y$, $Z \rightarrow Y$
- Per-protocol effect
 - the effect of treatment that would have been observed if all individuals had adhered to their assigned treatement
 - $\bullet \ A \to Y$

Per-protocol-effect

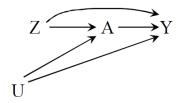


Figure 9.11

- *U*: severe illness
- If severely ill individuals in the Z=0 group tend to seek a heart transplant (A=1) outside of the study
- Backdoor path $A \leftarrow U \rightarrow Y$: confounding exists
- However, since Z is randomly assigned, there is no confounding for the effect of Z

Per-protocol-effect

Intention-to-treat effect	Per-protocol effect
Effectiveness	Efficacy
may not measure	measure the treatment effect
the treatment effect	
easier to compute	hard to compute
	(adjustment required)

- trade-off between bias due to potential unmeasured confounding
- preference that needs to be justified in each application